Sided Functions of an Arginine–Agmatine Antiporter Oriented in Liposomes
The arginine-dependent extreme acid resistance system helps enteric bacteria survive the harsh gastric environment. At the center of this multiprotein system is an arginine–agmatine antiporter, AdiC. To maintain cytoplasmic pH, AdiC imports arginine and exports its decarboxylated product, agmatine,...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2012-02, Vol.51 (8), p.1577-1585 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The arginine-dependent extreme acid resistance system helps enteric bacteria survive the harsh gastric environment. At the center of this multiprotein system is an arginine–agmatine antiporter, AdiC. To maintain cytoplasmic pH, AdiC imports arginine and exports its decarboxylated product, agmatine, resulting in a net extrusion of one “virtual proton” in each turnover. The random orientation of AdiC in reconstituted liposomes throws up an obstacle to quantifying its transport mechanism. To overcome this problem, we introduced a mutation, S26C, near the substrate-binding site. This mutant exhibits substrate recognition and pH-dependent activity similar to those of the wild-type protein but loses function completely upon reaction with thiol reagents. The membrane-impermeant MTSES reagent can then be used as a cleanly sided inhibitor to silence those S26C-AdiC proteins whose extracellular portion projects from the external side of the liposome. Alternatively, the membrane-permeant MTSEA and membrane-impermeant reducing reagent, TCEP, can be used together to inhibit proteins in the opposite orientation. This approach allows steady-state kinetic analysis of AdiC in a sided fashion. Arginine and agmatine have similar Michaelis–Menten parameters for both sides of the protein, while the extracellular side selects arginine over argininamide, a mimic of the carboxylate-protonated form of arginine, more effectively than does the cytoplasmic side. Moreover, the two sides of AdiC have different pH sensitivities. AdiC activity increases to a plateau at pH 4 as the extracellular side is acidified, while the cytoplasmic side shows an optimal pH of 5.5, with further acidification inhibiting transport. This oriented system allows more precise analysis of AdiC-mediated substrate transport than has been previously available and permits comparison to the situation experienced by the bacterial membrane under acid stress. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi201897t |