Production of transgenic calves expressing an shRNA targeting myostatin

Myostatin (MSTN) is a well‐known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular reproduction and development 2012-03, Vol.79 (3), p.176-185
Hauptverfasser: Tessanne, K., Golding, M.C., Long, C.R., Peoples, M.D., Hannon, G., Westhusin, M.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myostatin (MSTN) is a well‐known negative regulator of muscle growth. Animals that possess mutations within this gene display an enhanced muscling phenotype, a desirable agricultural trait. Increased neonatal morbidity is common, however, resulting from complications arising from the birth of offspring with increased fetal muscle mass. The objective of the current research was to generate an attenuated MSTN‐null phenotype in a large‐animal model using RNA interference to enhance muscle development without the detrimental consequences of an inactivating mutation. To this end, we identified a series of short interfering RNAs that demonstrated effective suppression of MSTN mRNA and protein levels. To produce transgenic offspring capable of stable MSTN suppression in vivo, a recombinant lentiviral vector expressing a short hairpin RNA (shRNA) targeting MSTN for silencing was introduced into bovine fetal fibroblasts. These cells were used as nucleus donors for somatic cell nuclear transfer (SCNT). Twenty blastocysts were transferred into seven recipient cows resulting in five pregnancies. One transgenic calf developed to term, but died following delivery by Caesarean‐section. As an alternative strategy, microinjection of recombinant lentiviral particles into the perivitelline space of in vitro‐produced bovine zygotes was utilized to produce 40 transgenic blastocysts that were transferred into 14 recipient cows, resulting in 7 pregnancies. Five transgenic calves were produced, of which three expressed the transgene. This is the first report of transgenic livestock produced by direct injection of a recombinant lentivirus, and expressing transgenes encoding shRNAs targeting an endogenous gene (myostatin) for silencing. Mol. Reprod. Dev. 79: 176–185, 2012. © 2011 Wiley Periodicals, Inc.
ISSN:1040-452X
1098-2795
DOI:10.1002/mrd.22007