N-Methyl-d-aspartate Receptor Mechanosensitivity Is Governed by C Terminus of NR2B Subunit

N-Methyl-d-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg2+ block. However, the regulation of this mechanosensitivity has yet to be further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-02, Vol.287 (6), p.4348-4359
Hauptverfasser: Singh, Pallab, Doshi, Shachee, Spaethling, Jennifer M., Hockenberry, Adam J., Patel, Tapan P., Geddes-Klein, Donna M., Lynch, David R., Meaney, David F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:N-Methyl-d-aspartate receptors (NMDARs), critical mediators of both physiologic and pathologic neurological signaling, have previously been shown to be sensitive to mechanical stretch through the loss of its native Mg2+ block. However, the regulation of this mechanosensitivity has yet to be further explored. Furthermore, as it has become apparent that NMDAR-mediated signaling is dependent on specific NMDAR subtypes, as governed by the identity of the NR2 subunit, a crucial unanswered question is the role of subunit composition in observed NMDAR mechanosensitivity. Here, we used a recombinant system to assess the mechanosensitivity of specific subtypes and demonstrate that the mechanosensitive property is uniquely governed by the NR2B subunit. NR1/NR2B NMDARs displayed significant stretch sensitivity, whereas NR1/NR2A NMDARs did not respond to stretch. Furthermore, NR2B mechanosensitivity was regulated by PKC activity, because PKC inhibition reduced stretch responses in transfected HEK 293 cells and primary cortical neurons. Finally, using NR2B point mutations, we identified a PKC phosphorylation site, Ser-1323 on NR2B, as a unique critical regulator of stretch sensitivity. These data suggest that the selective mechanosensitivity of NR2B can significantly impact neuronal response to traumatic brain injury and illustrate that the mechanical tone of the neuron can be dynamically regulated by PKC activity. Background: The NMDA receptor mediates stretch-induced calcium influx and resulting neuronal excitotoxicity. Results: Calcium influx through NMDA receptors following stretch is reduced in cultures expressing NR2B C-terminal mutations. Conclusion: Mechanosensitivity of NMDA receptors is dependent on the NR2B subunit and PKC activity at the NR2B C terminus. Significance: These data provide insight into NMDA receptor subtype-specific mechanisms that dictate response to neuronal stretch.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.253740