Human Ku70/80 Protein Blocks Exonuclease 1-mediated DNA Resection in the Presence of Human Mre11 or Mre11/Rad50 Protein Complex
DNA double strand breaks (DSB) are repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Recent genetic data in yeast shows that the choice between these two pathways for the repair of DSBs is via competition between the NHEJ protein, Ku, and the HR protein, Mre11/Rad50/Xrs2...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2012-02, Vol.287 (7), p.4936-4945 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DNA double strand breaks (DSB) are repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Recent genetic data in yeast shows that the choice between these two pathways for the repair of DSBs is via competition between the NHEJ protein, Ku, and the HR protein, Mre11/Rad50/Xrs2 (MRX) complex. To study the interrelationship between human Ku and Mre11 or Mre11/Rad50 (MR), we established an in vitro DNA end resection system using a forked model dsDNA substrate and purified human Ku70/80, Mre11, Mre11/Rad50, and exonuclease 1 (Exo1). Our study shows that the addition of Ku70/80 blocks Exo1-mediated DNA end resection of the forked dsDNA substrate. Although human Mre11 and MR bind to the forked double strand DNA, they could not compete with Ku for DNA ends or actively mediate the displacement of Ku from the DNA end either physically or via its exonuclease or endonuclease activity. Our in vitro studies show that Ku can block DNA resection and suggest that Ku must be actively displaced for DNA end processing to occur and is more complicated than the competition model established in yeast.
Background: Pathway choice for the repair of double strand breaks is not fully understood.
Results: Human Ku blocks exonuclease 1-mediated DNA processing in the presence of Mre11 or Mre11/Rad50.
Conclusion: Unlike in yeast, the displacement of Ku from DNA ends is not mediated by Mre11 or the Mre11/Rad50 complex.
Significance: Pathway choice between nonhomologous end-joining and homologous recombination is likely more complex than simple competition between the two pathways. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M111.306167 |