Effects of S-adenosylmethionine and methylthioadenosine on inflammation-induced colon cancer in mice

Chronic inflammation is an underlying risk factor for colon cancer. Tumor necrosis factor alpha (TNF-α) plays a critical role in the development of inflammation-induced colon cancer in a mouse model. S-adenosylmethionine (SAMe) and its metabolite methylthioadenosine (MTA) can inhibit lipopolysacchar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carcinogenesis (New York) 2012-02, Vol.33 (2), p.427-435
Hauptverfasser: Li, Tony W.H., Yang, Heping, Peng, Hui, Xia, Meng, Mato, José M., Lu, Shelly C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic inflammation is an underlying risk factor for colon cancer. Tumor necrosis factor alpha (TNF-α) plays a critical role in the development of inflammation-induced colon cancer in a mouse model. S-adenosylmethionine (SAMe) and its metabolite methylthioadenosine (MTA) can inhibit lipopolysaccharide-induced TNF-α expression in macrophages. The aim of this work was to examine whether SAMe and MTA are effective in preventing inflammation-induced colon cancer and if so identify signaling pathways affected. Balb/c mice were treated with azoxymethane (AOM) and dextran sulfate sodium to induce colon cancer. Two days after AOM treatment, mice were divided into three groups: vehicle control, SAMe or MTA. Tumor load, histology, immunohistochemistry, gene and protein expression were determined. SAMe and MTA treatment reduced tumor load by ∼40%. Both treatments raised SAMe and MTA levels but MTA also raised S-adenosylhomocysteine levels. MTA treatment prevented the induction of many genes known to play pathogenetic roles in this model except for TNF-α and inducible nitric oxide synthase (iNOS). SAMe also had no effect on TNF-α or iNOS and was less inhibitory than MTA on the other genes. In vivo, both treatments induced apoptosis but inhibited proliferation, β-catenin, nuclear factor kappa B activation and interleukin (IL) 6 signaling. Effect of SAMe and MTA on IL-6 signaling was examined using Colo 205 colon cancer cells. In these cells, SAMe and MTA inhibited IL-6-induced IL-10 expression. MTA also inhibited IL-10 transcription and signal transducer and activator of transcription 3 activation. In conclusion, SAMe and MTA reduced inflammation-induced colon cancer and inhibited several pathways important in colon carcinogenesis.
ISSN:0143-3334
1460-2180
DOI:10.1093/carcin/bgr295