Evolutionary strata on the mouse X chromosome correspond to strata on the human X chromosome

Lahn and Page previously observed that genes on the human X chromosome were physically arranged along the chromosome in "strata," roughly ordered by degree of divergence from related genes on the Y chromosome. They hypothesized that this ordering results from a historical series of suppres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2004-02, Vol.14 (2), p.267-272
Hauptverfasser: Sandstedt, Sara A, Tucker, Priscilla K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lahn and Page previously observed that genes on the human X chromosome were physically arranged along the chromosome in "strata," roughly ordered by degree of divergence from related genes on the Y chromosome. They hypothesized that this ordering results from a historical series of suppressions of recombination along the mammalian Y chromosome, thereby allowing formerly recombining X and Y chromosomal genes to diverge independently. Here predictions of this hypothesis are confirmed in a nonprimate mammalian order, Rodentia, through an analysis of eight gene pairs from the X and Y chromosomes of the house mouse, Mus musculus. The mouse X chromosome has been rearranged relative to the human X, so strata were not found in the same physical order on the mouse X. However, based on synonymous evolutionary distances, X-linked genes in M. musculus fall into the same strata as orthologous genes in humans, as predicted. The boundary between strata 2 and 3 is statistically significant, but the boundary between strata 1 and 2 is not significant in mice. An analysis of smaller fragments of Smcy, Smcx, Zfy, and Zfx from seven species of Mus confirmed that the strata in Mus musculus were representative of the genus Mus.
ISSN:1088-9051
1054-9803
DOI:10.1101/gr.1796204