RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice
RASA1 (also known as p120 RasGAP) is a Ras GTPase-activating protein that functions as a regulator of blood vessel growth in adult mice and humans. In humans, RASA1 mutations cause capillary malformation-arteriovenous malformation (CM-AVM); whether it also functions as a regulator of the lymphatic v...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2012-02, Vol.122 (2), p.733-747 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RASA1 (also known as p120 RasGAP) is a Ras GTPase-activating protein that functions as a regulator of blood vessel growth in adult mice and humans. In humans, RASA1 mutations cause capillary malformation-arteriovenous malformation (CM-AVM); whether it also functions as a regulator of the lymphatic vasculature is unknown. We investigated this issue using mice in which Rasa1 could be inducibly deleted by administration of tamoxifen. Systemic loss of RASA1 resulted in a lymphatic vessel disorder characterized by extensive lymphatic vessel hyperplasia and leakage and early lethality caused by chylothorax (lymphatic fluid accumulation in the pleural cavity). Lymphatic vessel hyperplasia was a consequence of increased proliferation of lymphatic endothelial cells (LECs) and was also observed in mice in which induced deletion of Rasa1 was restricted to LECs. RASA1-deficient LECs showed evidence of constitutive activation of Ras in situ. Furthermore, in isolated RASA1-deficient LECs, activation of the Ras signaling pathway was prolonged and cellular proliferation was enhanced after ligand binding to different growth factor receptors, including VEGFR-3. Blockade of VEGFR-3 was sufficient to inhibit the development of lymphatic vessel hyperplasia after loss of RASA1 in vivo. These findings reveal a role for RASA1 as a physiological negative regulator of LEC growth that maintains the lymphatic vasculature in a quiescent functional state through its ability to inhibit Ras signal transduction initiated through LEC-expressed growth factor receptors such as VEGFR-3. |
---|---|
ISSN: | 0021-9738 1558-8238 |
DOI: | 10.1172/JCI46116 |