Regulated and Reversible Induction of Adult Human β-cell Replication

Induction of proliferation in adult human β-cells is challenging. It can be accomplished by introduction of cell cycle molecules such as cyclin-dependent kinase 6 (cdk6) and cyclin D1, but their continuous overexpression raises oncogenic concerns. We attempted to mimic normal, transient, perinatal h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2012-02, Vol.61 (2), p.418-424
Hauptverfasser: TAKANE, Karen K, KLEINBERGER, Jeffery W, SALIM, Fatimah G, FIASCHI-TAESCH, Nathalie M, STEWART, Andrew F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Induction of proliferation in adult human β-cells is challenging. It can be accomplished by introduction of cell cycle molecules such as cyclin-dependent kinase 6 (cdk6) and cyclin D1, but their continuous overexpression raises oncogenic concerns. We attempted to mimic normal, transient, perinatal human β-cell proliferation by delivering these molecules in a regulated and reversible manner. Adult cadaveric islets were transduced with doxycycline (Dox)-inducible adenoviruses expressing cdk6 or cyclin D1. End points were cdk6/cyclin D1 expression and human β-cell proliferation, survival, and function. Increasing doses of Dox led to marked dose- and time-related increases in cdk6 and cyclin D1, accompanied by a 20-fold increase in β-cell proliferation. Notably, Dox withdrawal resulted in a reversal of both cdk6 and cyclin D1 expression as well as β-cell proliferation. Re-exposure to Dox reinduced both cdk/cyclin expression and proliferation. β-Cell function and survival were not adversely affected. The adenoviral tetracycline (tet)-on system has not been used previously to drive human β-cell proliferation. Human β-cells can be induced to proliferate or arrest in a regulated, reversible manner, temporally and quantitatively mimicking the transient perinatal physiological proliferation that occurs in human β-cells.
ISSN:0012-1797
1939-327X
DOI:10.2337/db11-0580