Transposon Site Hybridization Screen Identifies galU and wecBC as Important for Survival of Yersinia pestis in Murine Macrophages

Yersinia pestis is able to survive and replicate within murine macrophages. However, the mechanism by which Y. pestis promotes its intracellular survival is not well understood. To identify genes that are important for Y. pestis survival in macrophages, a library comprised of ∼31,500 Y. pestis KIM6+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bacteriology 2012-02, Vol.194 (3), p.653-662
Hauptverfasser: Klein, Kathryn A, Fukuto, Hana S, Pelletier, Mark, Romanov, Galina, Grabenstein, Jens P, Palmer, Lance E, Ernst, Robert, Bliska, James B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Yersinia pestis is able to survive and replicate within murine macrophages. However, the mechanism by which Y. pestis promotes its intracellular survival is not well understood. To identify genes that are important for Y. pestis survival in macrophages, a library comprised of ∼31,500 Y. pestis KIM6+ transposon insertion mutants (input pool) was subjected to negative selection in primary murine macrophages. Genes underrepresented in the output pool of surviving bacteria were identified by transposon site hybridization to DNA oligonucleotide microarrays. The screen identified several genes known to be important for survival of Y. pestis in macrophages, including phoPQ and members of the PhoPQ regulon (e.g., pmrF). In addition, genes predicated to encode a glucose-1-phosphate uridylyltransferase (galU), a UDP-N-acetylglucosamine 2-epimerase (wecB) and a UDP-N-acetyl-D-mannosamine dehydrogenase (wecC) were identified in the screen. Viable-count assays demonstrated that a KIM6+ galU mutant and a KIM6+ wecBC mutant were defective for survival in murine macrophages. The galU mutant was studied further because of its strong phenotype. The KIM6+ galU mutant exhibited increased susceptibility to the antimicrobial peptides polymyxin B and cathelicidin-related antimicrobial peptide (CRAMP). Polyacrylamide gel electrophoresis demonstrated that the lipooligosaccharide (LOS) of the galU mutant migrated faster than the LOS of the parent KIM6+, suggesting the core was truncated. In addition, the analysis of LOS isolated from the galU mutant by mass spectrometry showed that aminoarabinose modification of lipid A is absent. Therefore, addition of aminoarabinose to lipid A and complete LOS core (galU), as well as enterobacterial common antigen (wecB and wecC), is important for survival of Y. pestis in macrophages.
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/JB.06237-11