In Vivo Neurochemical Monitoring Using Benzoyl Chloride Derivatization and Liquid Chromatography–Mass Spectrometry

In vivo neurochemical monitoring using microdialysis sampling is important in neuroscience because it allows correlation of neurotransmission with behavior, disease state, and drug concentrations in the intact brain. A significant limitation of current practice is that different assays are utilized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2012-01, Vol.84 (1), p.412-419
Hauptverfasser: Song, Peng, Mabrouk, Omar S, Hershey, Neil D, Kennedy, Robert T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vivo neurochemical monitoring using microdialysis sampling is important in neuroscience because it allows correlation of neurotransmission with behavior, disease state, and drug concentrations in the intact brain. A significant limitation of current practice is that different assays are utilized for measuring each class of neurotransmitter. We present a high performance liquid chromatography (HPLC)–tandem mass spectrometry method that utilizes benzoyl chloride for determination of the most common low molecular weight neurotransmitters and metabolites. In this method, 17 analytes were separated in 8 min. The limit of detection was 0.03–0.2 nM for monoamine neurotransmitters, 0.05–11 nM for monoamine metabolites, 2–250 nM for amino acids, 0.5 nM for acetylcholine, 2 nM for histamine, and 25 nM for adenosine at sample volume of 5 μL. Relative standard deviation for repeated analysis at concentrations expected in vivo averaged 7% (n = 3). Commercially available 13C benzoyl chloride was used to generate isotope-labeled internal standards for improved quantification. To demonstrate utility of the method for study of small brain regions, the GABAA receptor antagonist bicuculline (50 μM) was infused into a rat ventral tegmental area while recording neurotransmitter concentration locally and in nucleus accumbens, revealing complex GABAergic control over mesolimbic processes. To demonstrate high temporal resolution monitoring, samples were collected every 60 s while neostigmine, an acetylcholine esterase inhibitor, was infused into the medial prefrontal cortex. This experiment revealed selective positive control of acetylcholine over cortical glutamate.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/ac202794q