A feedback loop between Wolbachia and the Drosophila gurken mRNP complex influences Wolbachia titer

Although much is known about interactions between bacterial endosymbionts and their hosts, little is known concerning the host factors that influence endosymbiont titer. Wolbachia endosymbionts are globally dispersed throughout most insect species and are the causative agent in filarial nematode-med...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2011-12, Vol.124 (Pt 24), p.4299-4308
Hauptverfasser: Serbus, Laura R, Ferreccio, Amy, Zhukova, Mariya, McMorris, Chanel L, Kiseleva, Elena, Sullivan, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although much is known about interactions between bacterial endosymbionts and their hosts, little is known concerning the host factors that influence endosymbiont titer. Wolbachia endosymbionts are globally dispersed throughout most insect species and are the causative agent in filarial nematode-mediated disease. Our investigation indicates that gurken (grk), a host gene encoding a crucial axis determinant, has a cumulative, dosage-sensitive impact on Wolbachia growth and proliferation during Drosophila oogenesis. This effect appears to be mediated by grk mRNA and its protein-binding partners Squid and Hrp48/Hrb27C, implicating the grk mRNA-protein (mRNP) complex as a rate-limiting host factor controlling Wolbachia titer. Furthermore, highly infected flies exhibit defects that match those occurring with disruption of grk mRNPs, such as nurse cell chromatin disruptions and malformation of chorionic appendages. These findings suggest a feedback loop in which Wolbachia interaction with the grk mRNP affects both Wolbachia titer and grk mRNP function.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.092510