Elevated androgens during puberty in female rhesus monkeys lead to increased neuronal drive to the reproductive axis: a possible component of polycystic ovary syndrome

BACKGROUND Hyperandrogenemia is associated with several clinical disorders in which both reproductive dysfunction and metabolic changes may coexist [i.e. polycystic ovary syndrome (PCOS), obesity and congenital adrenal hyperplasia]. Moreover, there is growing evidence that the elevated levels of cir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2012-02, Vol.27 (2), p.531-540
Hauptverfasser: McGee, W.K., Bishop, C.V., Bahar, A., Pohl, C.R., Chang, R.J., Marshall, J.C., Pau, F.K., Stouffer, R.L., Cameron, J.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND Hyperandrogenemia is associated with several clinical disorders in which both reproductive dysfunction and metabolic changes may coexist [i.e. polycystic ovary syndrome (PCOS), obesity and congenital adrenal hyperplasia]. Moreover, there is growing evidence that the elevated levels of circulating androgens in obese girls may lead to an increased neuroendocrine drive to the reproductive axis, similar to that associated with PCOS. METHODS To test whether androgen exposure in the childhood and adolescent period could lead to pubertal alterations in LH secretory patterns, female rhesus monkeys received subcutaneous testosterone implants prepubertally beginning at 1 year of age, maintaining a 3.7-fold increase (P = 0.001) in circulating testosterone levels over cholesterol-implant controls (n = 6/group) into the post-pubertal period. In early adulthood, pulsatile secretion of LH was measured over 12 h during the early follicular phase of a menstrual cycle, and responsiveness of the pituitary to gonadotrophin-releasing hormone was determined. In addition, ultrasounds were performed to assess ovarian morphology and glucose tolerance testing was performed to assess insulin sensitivity. RESULTS The timing of menarche was similar between groups. Testosterone-treated animals had a significantly greater LH pulse frequency during the early follicular phase compared with controls (P = 0.039) when measured at 5 years of age. There was a larger LH response to GnRH when testosterone-treated animals were 4 years of age (P = 0.042), but not when the animals were 5 years old (P = 0.57). No differences were seen in insulin sensitivity or ovarian morphology, and the groups showed similar rates of ovulation in early adulthood. CONCLUSIONS Exposure to increased levels of androgens over the course of pubertal development appears to trigger physiological changes in the neural drive to the reproductive axis that resemble those of obese hyperandrogenemic girls in early adulthood and are characteristic of PCOS.
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/der393