Endosomal Accumulation of the Activated Epidermal Growth Factor Receptor (EGFR) Induces Apoptosis

Endocytosis positively and negatively regulates cell surface receptor signaling by temporally and spatially controlling interactions with downstream effectors. This process controls receptor-effector communication. However, the relationship between receptor endocytic trafficking and cell physiology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2012-01, Vol.287 (1), p.712-722
Hauptverfasser: Rush, Jamie S., Quinalty, Leslie M., Engelman, Luke, Sherry, David M., Ceresa, Brian P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endocytosis positively and negatively regulates cell surface receptor signaling by temporally and spatially controlling interactions with downstream effectors. This process controls receptor-effector communication. However, the relationship between receptor endocytic trafficking and cell physiology is unclear. In MDA-MB-468 cells, cell surface EGF receptors (EGFRs) promote cell growth, whereas intracellular EGFRs induce apoptosis, making these cells an excellent model for studying the endocytic regulation of EGFR signaling. In addition, MDA-MB-468 cells have limited EGFR degradation following stimulation. Here, we report that in MDA-MB-468 cells the phosphorylated EGFR accumulates on the limiting membrane of the endosome with its carboxyl terminus oriented to the cytoplasm. To determine whether perturbation of EGFR trafficking is sufficient to cause apoptosis, we used pharmacological and biochemical strategies to disrupt EGFR endocytic trafficking in HeLa cells, which do not undergo EGF-dependent apoptosis. Manipulation of HeLa cells so that active EGF·EGFRs accumulate on the limiting membrane of endosomes reveals that receptor phosphorylation is sustained and leads to apoptosis. When EGF·EGFR complexes accumulated in the intraluminal vesicles of the late endosome, phosphorylation of the receptor was not sustained, nor did the cells undergo apoptosis. These data demonstrate that EGFR-mediated apoptosis is initiated by the activated EGFR from the limiting membrane of the endosome. Background: EGF receptor (EGFR) signaling is regulated by endocytosis. Results: The intracellular localization of the EGFR affects its signaling. Conclusion: EGFRs on the limiting membrane of endosomes, but not from the intraluminal vesicles, can induce apoptosis. Significance: EGFR signaling is spatially regulated at multiple steps of the endocytic pathway.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.294470