Differential Ordering of the Protein Backbone and Side Chains during Protein Folding Revealed by Site-Specific Recombinant Infrared Probes
The time scale for ordering of the polypeptide backbone relative to the side chains is a critical issue in protein folding. The interplay between ordering of the backbone and ordering of the side chains is particularly important for the formation of β-sheet structures, as the polypeptide chain searc...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2011-12, Vol.133 (50), p.20335-20340 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time scale for ordering of the polypeptide backbone relative to the side chains is a critical issue in protein folding. The interplay between ordering of the backbone and ordering of the side chains is particularly important for the formation of β-sheet structures, as the polypeptide chain searches for the native stabilizing cross-strand interactions. We have studied these issues in the N-terminal domain of protein L9 (NTL9), a model protein with mixed α/β structure. We have developed a general approach for introducing site-specific IR probes for the side chains (azide) and backbone (13C18O) using recombinant protein expression. Temperature-jump time-resolved IR spectroscopy combined with site-specific labeling enables independent measurement of the respective backbone and side-chain dynamics with single residue resolution. We have found that side-chain ordering in a key region of the β-sheet structure occurs on a slower time scale than ordering of the backbone during the folding of NTL9, likely as a result of the transient formation of non-native side-chain interactions. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja2071362 |