Comparison of the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study Equations: Prevalence of and Risk Factors for Diabetes Mellitus in CKD in the Kidney Early Evaluation Program (KEEP)
Background Diabetes is a leading cause of chronic kidney disease (CKD). Whether reclassification of CKD stages based on glomerular filtration rate estimated using the CKD Epidemiology Collaboration (CKD-EPI) equation versus the Modification of Diet in Renal Disease (MDRD) Study equation modifies est...
Gespeichert in:
Veröffentlicht in: | American journal of kidney diseases 2011-03, Vol.57 (3), p.S24-S31 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Diabetes is a leading cause of chronic kidney disease (CKD). Whether reclassification of CKD stages based on glomerular filtration rate estimated using the CKD Epidemiology Collaboration (CKD-EPI) equation versus the Modification of Diet in Renal Disease (MDRD) Study equation modifies estimates of prevalent risk factors across stages is unknown. Methods This is a cross-sectional analysis of data from the Kidney Early Evaluation Program (KEEP), a community-based health screening program targeting individuals 18 years and older with diabetes, hypertension, or a family history of diabetes, hypertension, or kidney disease. Of 109,055 participants, 68.2% were women and 31.8% were African American. Mean age was 55.3 ± 0.05 years. Clinical, demographic, and laboratory data were collected from August 2000 through December 2009. Glomerular filtration rate was estimated using the CKD-EPI and MDRD Study equations. Results CKD was present in 25.6% and 23.5% of the study population using the MDRD Study and CKD-EPI equations, respectively. Diabetes was present in 42.4% and 43.8% of participants with CKD, respectively. Prevalent risk factors for diabetes included obesity (body mass index >30 kg/m2 ), 44.0%; hypertension, 80.5%; cardiovascular disease, 23.2%; family history of diabetes, 55.9%; and dyslipidemia, 43.0%. In a logistic regression model after adjusting for age and other risk factors, odds for diabetes increased significantly compared with no CKD with each CKD stage based on the CKD-EPI equation and similarly with stages based on the MDRD Study equation. Using a CKD-EPI–adjusted model, ORs were: stage 1, 2.08 (95% CI, 1.90-2.27); stage 2, 1.86 (95% CI, 1.72-2.02); stage 3, 1.23 (95% CI, 1.17-1.30); stage 4, 1.69 (95% CI, 1.42-2.03); and stage 5, 2.46 (95% CI, 1.46-4.14). Conclusions Using the CKD-EPI equation led to a lower prevalence of CKD but to similar diabetes prevalence rates associated with CKD across all stages compared with the MDRD Study equation. Diabetes and other CKD risk factor prevalence was increased compared with the non-CKD population. |
---|---|
ISSN: | 0272-6386 1523-6838 |
DOI: | 10.1053/j.ajkd.2010.11.009 |