Structural Correlates of Cytoplasmic and Chloroplast Lipid Body Synthesis in Chlamydomonas reinhardtii and Stimulation of Lipid Body Production with Acetate Boost
Light microscopy and deep-etch electron microscopy were used to visualize triacylglyceride (TAG)-filled lipid bodies (LBs) of the green eukaryotic soil alga Chlamydomonas reinhardtii, a model organism for biodiesel production. Cells growing in nitrogen-replete media contain small cytoplasmic lipid b...
Gespeichert in:
Veröffentlicht in: | Eukaryotic Cell 2011-12, Vol.10 (12), p.1592-1606 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light microscopy and deep-etch electron microscopy were used to visualize triacylglyceride (TAG)-filled lipid bodies (LBs) of the green eukaryotic soil alga Chlamydomonas reinhardtii, a model organism for biodiesel production. Cells growing in nitrogen-replete media contain small cytoplasmic lipid bodies (α-cyto-LBs) and small chloroplast plastoglobules. When starved for N, β-cyto-LB formation is massively stimulated. β-Cyto-LBs are intimately associated with both the endoplasmic reticulum membrane and the outer membrane of the chloroplast envelope, suggesting a model for the active participation of both organelles in β-cyto-LB biosynthesis and packaging. When sta6 mutant cells, blocked in starch biosynthesis, are N starved, they produce β-cyto-LBs and also chloroplast LBs (cpst-LBs) that are at least 10 times larger than plastoglobules and eventually engorge the chloroplast stroma. Production of β-cyto-LBs and cpst-LBs under the conditions we used is dependent on exogenous 20 mM acetate. We propose that the greater TAG yields reported for N-starved sta6 cells can be attributed to the strain's ability to produce cpst-LBs, a capacity that is lost when the mutant is complemented by a STA6 transgene. Provision of a 20 mM acetate "boost" during N starvation generates sta6 cells that become so engorged with LBs—at the expense of cytoplasm and most organelles—that they float on water even when centrifuged. This property could be a desirable feature for algal harvesting during biodiesel production. |
---|---|
ISSN: | 1535-9778 1535-9786 |
DOI: | 10.1128/EC.05242-11 |