Chronic exercise preserves renal structure and hemodynamics in spontaneously hypertensive rats

Exercise training (ExT) is a recommended adjunct to many pharmaceutical antihypertensive therapies. The effects of chronic ExT on the development of hypertension-induced renal injury remain unknown. We examined whether ExT would preserve renal hemodynamics and structure in the spontaneously hyperten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2012-01, Vol.16 (2), p.139-152
Hauptverfasser: Agarwal, Deepmala, Elks, Carrie M, Reed, Scott D, Mariappan, Nithya, Majid, Dewan S A, Francis, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exercise training (ExT) is a recommended adjunct to many pharmaceutical antihypertensive therapies. The effects of chronic ExT on the development of hypertension-induced renal injury remain unknown. We examined whether ExT would preserve renal hemodynamics and structure in the spontaneously hypertensive rat (SHR), and whether these effects were mediated by improved redox status and decreased inflammation. Normotensive WKY rats and SHR underwent moderate-intensity ExT for 16 weeks. One group of SHR animals was treated with hydralazine to investigate the pressure-dependent/independent effects of ExT. Acute renal clearance experiments were performed prior to sacrifice. Tissue free radical production rates were measured by electron paramagnetic resonance; gene and protein expression were measured by real time RT-PCR and Western blot or immunofluorescence, respectively. Plasma angiotensin II levels and kidney antioxidants were assessed. Training efficacy was assessed by citrate synthase activity assay in hind-limb muscle. ExT delayed hypertension, prevented oxidative stress and inflammation, preserved antioxidant status, prevented an increase in circulating AngII levels, and preserved renal hemodynamics and structure in SHR. In addition, exercise-induced effects, at least, in part, were found to be pressure-independent. This study is the first to provide mechanistic evidence for the renoprotective benefits of ExT in a model of hypertension. Our results demonstrate that initiation of ExT in susceptible patients can delay the development of hypertension and provide renoprotection at the functional and ultrastructural level. Chronic ExT preserves renal hemodynamics and structure in SHR; these effects are partially mediated by improved redox status and decreased inflammation.
ISSN:1523-0864
1557-7716
1557-7716
DOI:10.1089/ars.2011.3967