Contributions of mature granule cells to structural plasticity in temporal lobe epilepsy

Abstract During the development of epilepsy in adult animals, newly generated granule cells integrate abnormally into the hippocampus. These new cells migrate to ectopic locations in the hilus, develop aberrant basal dendrites, contribute to mossy fiber sprouting, and exhibit changes in apical dendr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2011-12, Vol.197, p.348-357
Hauptverfasser: Santos, V.R, de Castro, O.W, Pun, R.Y.K, Hester, M.S, Murphy, B.L, Loepke, A.W, Garcia-Cairasco, N, Danzer, S.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract During the development of epilepsy in adult animals, newly generated granule cells integrate abnormally into the hippocampus. These new cells migrate to ectopic locations in the hilus, develop aberrant basal dendrites, contribute to mossy fiber sprouting, and exhibit changes in apical dendrite structure and dendritic spine number. Mature granule cells do not appear to exhibit migration defects, basal dendrites, and mossy fiber sprouting, but whether they exhibit apical dendrite abnormalities or spine changes is not known. To address these questions, we examined the apical dendritic structure of bromodeoxyuridine (Brdu)-birthdated, green fluorescent protein (GFP)-expressing granule cells born 2 months before pilocarpine-induced status epilepticus. In contrast to immature granule cells, exposing mature granule cells to status epilepticus did not significantly disrupt the branching structure of their apical dendrites. Mature granule cells did, however, exhibit significant reductions in spine density and spine number relative to age-matched cells from control animals. These data demonstrate that while mature granule cells are resistant to developing the gross structural abnormalities exhibited by younger granule cells, they show similar plastic rearrangement of their dendritic spines.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2011.09.034