PTTG1/securin modulates microtubule nucleation and cell migration

Pituitary tumor transforming gene 1 (PTTG1), also known as securin, has been implicated in many biological functions, including inhibition of sister chromatid separation, DNA repair, organ development, and regulation of the expression and secretion of angiogenic and metastatic factors. Although most...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2011-11, Vol.22 (22), p.4302-4311
Hauptverfasser: Moreno-Mateos, Miguel A, Espina, Águeda G, Torres, Belén, Gámez del Estal, María M, Romero-Franco, Ana, Ríos, Rosa M, Pintor-Toro, José A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pituitary tumor transforming gene 1 (PTTG1), also known as securin, has been implicated in many biological functions, including inhibition of sister chromatid separation, DNA repair, organ development, and regulation of the expression and secretion of angiogenic and metastatic factors. Although most of these functions of securin seem to depend on the localization of PTTG1 in the nucleus of the cell, a fraction of the protein has been also detected in the cytoplasm. Here we demonstrate that, in different cell types, a portion of cytoplasmic PTTG1 is associated with the cis face of the Golgi apparatus and that this localization depends on PTTG1 phosphorylation status. In this organelle, PTTG1 forms a complex with proteins involved in microtubule nucleation, including GM130, AKAP450, and γ-tubulin. RNA interference-mediated depletion of PTTG1 produces a delay in centrosomal and noncentrosomal microtubule nucleation. Cells lacking PTTG1 show severe defects in both cell polarization and migration in wound-healing assays. To our knowledge, this is the first study reporting the role of PTTG1 in microtubule nucleation and cell polarization, two processes directly involved in cell migration. We believe that these findings will contribute to understanding the mechanisms underlying PTTG1-mediated biological functions.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.e10-10-0838