Dysfunction of axonal membrane conductances in adolescents and young adults with spinal muscular atrophy
Spinal muscular atrophy is distinct among neurodegenerative conditions of the motor neuron, with onset in developing and maturing patients. Furthermore, the rate of degeneration appears to slow over time, at least in the milder forms. To investigate disease pathophysiology and potential adaptations,...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2011-11, Vol.134 (11), p.3185-3197 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spinal muscular atrophy is distinct among neurodegenerative conditions of the motor neuron, with onset in developing and maturing patients. Furthermore, the rate of degeneration appears to slow over time, at least in the milder forms. To investigate disease pathophysiology and potential adaptations, the present study utilized axonal excitability studies to provide insights into axonal biophysical properties and explored correlation with clinical severity. Multiple excitability indices (stimulus-response curve, strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle) were investigated in 25 genetically characterized adolescent and adult patients with spinal muscular atrophy, stimulating the median motor nerve at the wrist. Results were compared with 50 age-matched controls. The Medical Research Council sum score and Spinal Muscular Atrophy Functional Rating Scale were used to define the strength and motor functional status of patients with spinal muscular atrophy. In patients with spinal muscular atrophy, there were reductions in compound muscle action potential amplitude (P |
---|---|
ISSN: | 0006-8950 1460-2156 |
DOI: | 10.1093/brain/awr229 |