Genome-Wide Analyses Identify Recurrent Amplifications of Receptor Tyrosine Kinases and Cell-Cycle Regulatory Genes in Diffuse Intrinsic Pontine Glioma
Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Single-nucleotide polymor...
Gespeichert in:
Veröffentlicht in: | Journal of clinical oncology 2011-10, Vol.29 (30), p.3999-4006 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG.
Single-nucleotide polymorphism arrays were used to compare the frequencies of genomic copy number abnormalities in 43 DIPGs and eight low-grade brainstem gliomas with data from adult and pediatric (non-DIPG) glioblastomas, and expression profiles were evaluated using gene expression arrays for 27 DIPGs, six low-grade brainstem gliomas, and 66 nonbrainstem low-grade gliomas.
Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and nonbrainstem pediatric glioblastomas. Focal amplifications of genes within the receptor tyrosine kinase-Ras-phosphoinositide 3-kinase signaling pathway were found in 47% of DIPGs, the most common of which involved PDGFRA and MET. Thirty percent of DIPGs contained focal amplifications of cell-cycle regulatory genes controlling retinoblastoma protein (RB) phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures related to developmental processes compared with nonbrainstem pediatric high-grade gliomas, whereas expression signatures of low-grade brainstem and nonbrainstem gliomas were similar.
DIPGs comprise a molecularly related but distinct subgroup of pediatric gliomas. Genomic studies suggest that targeted inhibition of receptor tyrosine kinases and RB regulatory proteins may be useful therapies for DIPG. |
---|---|
ISSN: | 0732-183X 1527-7755 |
DOI: | 10.1200/JCO.2011.35.5677 |