Dynamic Changes in Sarcoplasmic Reticulum Structure in Ventricular Myocytes

The fidelity of excitation-contraction (EC) coupling in ventricular myocytes is remarkable, with each action potential evoking a [Ca2+]i transient. The prevalent model is that the consistency in EC coupling in ventricular myocytes is due to the formation of fixed, tight junctions between the sarcopl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2011-01, Vol.2011 (2011), p.1-14
Hauptverfasser: Vega, Amanda L., Yuan, Can, Votaw, V. Scott, Santana, Luis F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fidelity of excitation-contraction (EC) coupling in ventricular myocytes is remarkable, with each action potential evoking a [Ca2+]i transient. The prevalent model is that the consistency in EC coupling in ventricular myocytes is due to the formation of fixed, tight junctions between the sarcoplasmic reticulum (SR) and the sarcolemma where Ca2+ release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca2+]i during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b) were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.
ISSN:1110-7243
2314-6133
1110-7251
2314-6141
DOI:10.1155/2011/382586