Cytoplasmic to nuclear localization of fatty-acid binding protein correlates with specific forms of long-term memory in Drosophila

We recently reported evidence implicating fatty-acid binding protein (Fabp) in the control of sleep and memory formation. We used Drosophila melanogaster to examine the relationship between sleep and memory through transgenic overexpression of mouse brain-Fabp, Fabp7, or the Drosophila Fabp homolog,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communicative & integrative biology 2011-09, Vol.4 (5), p.623-626
Hauptverfasser: Gerstner, Jason R, Vanderheyden, William M, Shaw, Paul J, Landry, Charles F, Yin, Jerry Cp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently reported evidence implicating fatty-acid binding protein (Fabp) in the control of sleep and memory formation. We used Drosophila melanogaster to examine the relationship between sleep and memory through transgenic overexpression of mouse brain-Fabp, Fabp7, or the Drosophila Fabp homolog, (dFabp). The key findings are that 1) a genetically induced increase in daytime consolidated sleep (naps) correlates with an increase in cognitive performance, and 2) a late "window" of memory consolidation occurs days after the traditionally understood "synaptic" consolidation. Exactly how Fabp-signaling may be involved in converting normal to enhanced long-term memory (LTM) is not known. Here we describe additional data which support relative subcellular compartmental localization of Fabp in regulating stage associations of different forms of memory in Drosophila. Anesthesia resistant memory (ARM) is a longer lasting memory that is produced by massed training, but unlike LTM produced by spaced training, it is insensitive to protein synthesis inhibitors and does not persist as long. We observed that the ratio of ARM to LTM performance index of Fabp7-transgenic flies is proportional to the relative cytoplasmic to nuclear Fabp7 expression level. These data suggest a common lipid-signaling cascade exists between phases of memory formation previously thought to be molecularly distinct.
ISSN:1942-0889
DOI:10.4161/cib.4.5.16927