TAK1-dependent Signaling Requires Functional Interaction with TAB2/TAB3
Transforming growth factor β-activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor β-signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) p...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2007-02, Vol.282 (6), p.3918-3928 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transforming growth factor β-activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor β-signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors linking TAK1 to the upstream adaptors TRAFs. However, it remains unclear whether the interaction between TAB2/TAB3 and TAK1 is necessary for its kinase activation and subsequent activation of the IKK and MAPK pathways. Here, we characterized the TAB2/TAB3-binding domain in TAK1 and further examined the requirement of this interaction for IL-1, TNF, and RANKL signaling. Through deletion mapping experiments, we demonstrated that the binding motif for TAB2/TAB3 is a non-contiguous region located within the last C-terminal 100 residues of TAK1. However, residues 479–553 of TAK1 appear to be necessary and sufficient for TAB2/TAB3 interaction. Conversely, residues 574–693 of TAB2 were shown to interact with TAK1. A green fluorescent protein fusion protein containing the last 100 residues of TAK1 (TAK1-C100) abolished the interaction of endogenous TAB2/TAB3 with TAK1, the phosphorylation of TAK1, and prevented the activation of IKK and MAPK induced by IL-1, TNF, and RANKL. Furthermore, TAK1-C100 blocked RANKL-induced nuclear accumulation of NFATc1 and consequently osteoclast differentiation consistent with the ability of a catalytically inactive TAK1 to block RANKL-mediated signaling. Significantly, our study provides evidence that the TAB2/TAB3 interaction with TAK1 is crucial for the activation of signaling cascades mediated by IL-1, TNF, and RANKL. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M608867200 |