A novel kinase inhibitor of FADD phosphorylation chemosensitizes through the inhibition of NF-κB

Fas-associated protein with death domain (FADD) is a cytosolic adapter protein essential for mediating death receptor-induced apoptosis. It has also been implicated in a number of nonapoptotic activities including embryogenesis, cell-cycle progression, cell proliferation, and tumorigenesis. Our rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer therapeutics 2011-10, Vol.10 (10), p.1807-1817
Hauptverfasser: Schinske, Katrina A, Nyati, Shyam, Khan, Amjad P, Williams, Terence M, Johnson, Timothy D, Ross, Brian D, Tomás, Ricardo Pérez, Rehemtulla, Alnawaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fas-associated protein with death domain (FADD) is a cytosolic adapter protein essential for mediating death receptor-induced apoptosis. It has also been implicated in a number of nonapoptotic activities including embryogenesis, cell-cycle progression, cell proliferation, and tumorigenesis. Our recent studies have shown that high levels of phosphorylated FADD (p-FADD) in tumor cells correlate with increased activation of the antiapoptotic transcription factor NF-κB and is a biomarker for aggressive disease and poor clinical outcome. These findings suggest that inhibition of FADD phosphorylation is a viable target for cancer therapy. A high-throughput screen using a cell-based assay for monitoring FADD-kinase activity identified NSC 47147 as a small molecule inhibitor of FADD phosphorylation. The compound was evaluated in live cells and mouse tumors for its efficacy as an inhibitor of FADD-kinase activity through the inhibition of casein kinase 1α. NSC 47147 was shown to decrease levels of p-FADD and NF-κB activity such that combination therapy leads to greater induction of apoptosis and enhanced tumor control than either agent alone. The studies described here show the utility of bioluminescent cell-based assays for the identification of active compounds and the validation of drug-target interaction in a living subject. In addition, the presented results provide proof-of-principle studies as to the validity of targeting FADD-kinase activity as a novel cancer therapy strategy.
ISSN:1535-7163
1538-8514
DOI:10.1158/1535-7163.MCT-11-0362