In Silico Analysis of Transcription Factor Repertoires and Prediction of Stress-Responsive Transcription Factors from Six Major Gramineae Plants

The interactions between transcription factors (TFs) and cis-regulatory DNA sequences control gene expression, constituting the essential functional linkages of gene regulatory networks. The aim of this study is to identify and integrate all putative TFs from six grass species: Brachypodium distachy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA research 2011-10, Vol.18 (5), p.321-332
Hauptverfasser: Mochida, Keiichi, Yoshida, Takuhiro, Sakurai, Tetsuya, Yamaguchi-Shinozaki, Kazuko, Shinozaki, Kazuo, Tran, Lam-Son Phan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interactions between transcription factors (TFs) and cis-regulatory DNA sequences control gene expression, constituting the essential functional linkages of gene regulatory networks. The aim of this study is to identify and integrate all putative TFs from six grass species: Brachypodium distachyon, maize, rice, sorghum, barley, and wheat with significant information into an integrative database (GramineaeTFDB) for comparative genomics and functional genomics. For each TF, sequence features, promoter regions, domain alignments, GO assignment, FL-cDNA information, if available, and cross-references to various public databases and genetic resources are provided. Additionally, GramineaeTFDB possesses a tool which aids the users to search for putative cis-elements located in the promoter regions of TFs and predict the functions of the TFs using cis-element-based functional prediction approach. We also supplied hyperlinks to expression profiles of those TF genes of maize, rice, and barley, for which data are available. Furthermore, information about the availability of FOX and Ds mutant lines for rice and maize TFs, respectively, are also accessible through hyperlinks. Our study provides an important user-friendly public resource for functional analyses and comparative genomics of grass TFs, and understanding of the architecture of transcriptional regulatory networks and evolution of the TFs in agriculturally important cereal crops.
ISSN:1340-2838
1756-1663
DOI:10.1093/dnares/dsr019