Glycan reader: Automated sugar identification and simulation preparation for carbohydrates and glycoproteins

Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM‐GUI, http://www.cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2011-11, Vol.32 (14), p.3135-3141
Hauptverfasser: Jo, Sunhwan, Song, Kevin C., Desaire, Heather, MacKerell Jr, Alexander D., Im, Wonpil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM‐GUI, http://www.charmm‐gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three‐dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N‐/O‐glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM‐GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011
ISSN:0192-8651
1096-987X
DOI:10.1002/jcc.21886