Glycogen synthase kinase 3β inhibitors induce apoptosis in ovarian cancer cells and inhibit in-vivo tumor growth

Ovarian cancer is the most lethal gynecological malignancy among US women. Paclitaxel/carboplatin is the current drug therapy used to treat ovarian cancer, but most women develop drug resistance and recurrence of the disease, necessitating alternative strategies for treatment. A possible molecular t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anti-cancer drugs 2011-11, Vol.22 (10), p.978-985
Hauptverfasser: Hilliard, Tyvette S, Gaisina, Irina N, Muehlbauer, Amanda G, Gaisin, Arsen M, Gallier, Franck, Burdette, Joanna E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ovarian cancer is the most lethal gynecological malignancy among US women. Paclitaxel/carboplatin is the current drug therapy used to treat ovarian cancer, but most women develop drug resistance and recurrence of the disease, necessitating alternative strategies for treatment. A possible molecular target for cancer therapy is glycogen synthase kinase 3β (GSK3β), a downstream kinase in the Wnt signaling pathway that is overexpressed in serous ovarian cancer. Novel maleimide-based GSK3β inhibitors (GSK3βi) were synthesized, selected, and tested in vitro using SKOV3 and OVCA432 serous ovarian cancer cell lines. From a panel of 10 inhibitors, GSK3βi 9ING41 was found to be the most effective in vitro. 9ING41 induced apoptosis as indicated by 4′,6-diamidino-2-phenylindole-positive nuclear condensation, poly (ADP-ribose) polymerase cleavage, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The mechanism for apoptosis was through caspase-3 cleavage. GSK3βi upregulated phosphorylation of the inhibitory serine residue of GSK3β in OVCA432 and SKOV3 cell lines and also inhibited phosphorylation of the downstream target glycogen synthase. An in-vivo xenograft study using SKOV3 cells demonstrated that tumor progression was hindered by 9ING41 in vivo. The maximum tolerated dose for 9ING41 was greater than 500 mg/kg in rats. Pharmacokinetic analysis showed 9ING41 to have a bioavailability of 4.5% and to be well distributed in tissues. Therefore, GSK3β inhibitors alone or in combination with existing drugs may hinder the growth of serous ovarian cancers.
ISSN:0959-4973
1473-5741
DOI:10.1097/CAD.0b013e32834ac8fc