The Third Transmembrane Segment of Orai1 Protein Modulates Ca2+ Release-activated Ca2+ (CRAC) Channel Gating and Permeation Properties

Orai1, the pore subunit of Ca2+ release-activated Ca2+ channels, has four transmembrane segments (TMs). The first segment, TMI, lines the pore and plays an important role in channel activation and ion permeation. TMIII, on the other hand, does not line the pore but still regulates channel gating and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2011-10, Vol.286 (40), p.35318-35328
Hauptverfasser: Srikanth, Sonal, Yee, Ma-Khin Win, Gwack, Yousang, Ribalet, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Orai1, the pore subunit of Ca2+ release-activated Ca2+ channels, has four transmembrane segments (TMs). The first segment, TMI, lines the pore and plays an important role in channel activation and ion permeation. TMIII, on the other hand, does not line the pore but still regulates channel gating and permeation properties. To understand the role of TMIII, we have mutated and characterized several residues in this domain. Mutation of Trp-176 to Cys (W176C) and Gly-183 to Ala (G183A) had dramatic effects. Unlike wild-type channels, which exhibit little outward current and are activated by STIM1, W176C mutant channels exhibited a large outward current at positive potentials and were constitutively active in the absence of STIM1. G183A mutant channels also exhibited substantial outward currents but were active only in the presence of 2-aminoethoxydiphenyl borate (2-APB), irrespective of STIM1. With W176C mutant channels inward, monovalent currents were blocked by Ca2+ with a high affinity similar to the wild type, but the Ca2+-dependent blocking of outward currents differed in the two cases. Although a 50% block of the WT outward current required 250 μm Ca2+, more than 6 mm was necessary to have the same effect on W176C mutant channels. In the presence of extracellular Ca2+, W176C and G183A outward currents developed slowly in a voltage-dependent manner, whereas they developed almost instantaneously in the absence of Ca2+. These changes in permeation and gating properties mimic the changes induced by mutations of Glu-190 in TMIII and Asp-110/Asp-112 in the TMI/TMII loop. On the basis of these data, we propose that TMIII maintains negatively charged residues at or near the selectivity filter in a conformation that facilitates Ca2+ inward currents and prevents outward currents of monovalent cations. In addition, to controlling selectivity, TMIII may also stabilize channel gating in a closed state in the absence of STIM1 in a Trp-176-dependent manner.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.265884