The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease
Abstract Challenges associated with the interference observed between the dengue virus components within early tetravalent live-attenuated vaccines led many groups to explore the development of recombinant subunit based vaccines. Initial efforts in the field were hampered by low yields and/or improp...
Gespeichert in:
Veröffentlicht in: | Vaccine 2011-09, Vol.29 (42), p.7267-7275 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Challenges associated with the interference observed between the dengue virus components within early tetravalent live-attenuated vaccines led many groups to explore the development of recombinant subunit based vaccines. Initial efforts in the field were hampered by low yields and/or improper folding, but the use of the Drosophila S2 cell expression system provided a mechanism to overcome these limitations. The truncated dengue envelope proteins (DEN-80E) for all four dengue virus types are expressed in the S2 system at high levels and have been shown to maintain native-like conformation. The DEN-80E proteins are potent immunogens when formulated with a variety of adjuvants, inducing high titer virus neutralizing antibody responses and demonstrating protection in both mouse and non-human primate models. Tetravalent vaccine formulations have shown no evidence of immune interference between the four DEN-80E antigens in preclinical models. Based on the promising preclinical data, the recombinant DEN-80E proteins have now advanced into clinical studies. An overview of the relevant preclinical data for these recombinant proteins is presented in this review. |
---|---|
ISSN: | 0264-410X 1873-2518 1873-2518 |
DOI: | 10.1016/j.vaccine.2011.07.021 |