A longitudinal HR‐pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover

The goal of this study was to characterize longitudinal changes in bone microarchitecture and function in women treated with an established antifracture therapeutic. In this double‐blind, placebo‐controlled pilot study, 53 early postmenopausal women with low bone density (age = 56 ± 4 years; femoral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bone and mineral research 2010-12, Vol.25 (12), p.2558-2571
Hauptverfasser: Burghardt, Andrew J, Kazakia, Galateia J, Sode, Miki, de Papp, Anne E, Link, Thomas M, Majumdar, Sharmila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The goal of this study was to characterize longitudinal changes in bone microarchitecture and function in women treated with an established antifracture therapeutic. In this double‐blind, placebo‐controlled pilot study, 53 early postmenopausal women with low bone density (age = 56 ± 4 years; femoral neck T‐score = −1.5 ± 0.6) were monitored by high‐resolution peripheral quantitative computed tomography (HR‐pQCT) for 24 months following randomization to alendronate (ALN) or placebo (PBO) treatment groups. Subjects underwent annual HR‐pQCT imaging of the distal radius and tibia, dual‐energy X‐ray absorptiometry (DXA), and determination of biochemical markers of bone turnover (BSAP and uNTx). In addition to bone density and microarchitecture assessment, regional analysis, cortical porosity quantification, and micro‐finite‐element analysis were performed. After 24 months of treatment, at the distal tibia but not the radius, HR‐pQCT measures showed significant improvements over baseline in the ALN group, particularly densitometric measures in the cortical and trabecular compartments and endocortical geometry (cortical thickness and area, medullary area) (p 
ISSN:0884-0431
1523-4681
DOI:10.1002/jbmr.157