Optically Enhanced, Near-IR, Silver Cluster Emission Altered by Single Base Changes in the DNA Template
Few-atom silver clusters harbored by DNA are promising fluorophores due to their high molecular brightness along with their long- and short-term photostability. Furthermore, their emission rate can be enhanced when co-illuminated with low-energy light that optically depopulates the fluorescence-limi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2011-06, Vol.115 (24), p.7996-8003 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Few-atom silver clusters harbored by DNA are promising fluorophores due to their high molecular brightness along with their long- and short-term photostability. Furthermore, their emission rate can be enhanced when co-illuminated with low-energy light that optically depopulates the fluorescence-limiting dark state. The photophysical basis for this effect is evaluated for two near-infrared-emitting clusters. Clusters emitting at ∼800 nm form with C3AC3AC3TC3A and C3AC3AC3GC3A, and both exhibit a trap state with λmax ∼ 840 nm and an absorption cross section of (5–6) × 10–16 cm2/molecule that can be optically depopulated. Transient absorption spectra, complemented by fluorescence correlation spectroscopy studies, show that the dark state has an inherent lifetime of 3–4 μs and that absorption from this state is accompanied by photoinduced crossover back to the emissive manifold of states with an action cross section of ∼2 × 10–18 cm2/molecule. Relative to C3AC3AC3TC3A, C3AC3AC3GC3A produces a longer-lived trap state and permits more facile passage back to the emissive manifold. With the C3AC3AC3AC3G template, a spectrally distinct cluster forms having emission at ∼900 nm, and its trap state has a ∼4-fold shorter lifetime. These studies of optically gated fluorescence bolster the critical role of the nucleobases in both the formation and excited state dynamics of these highly emissive metallic clusters. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp202024x |