Hypertonic stress induces rapid and widespread protein damage in C. elegans

Proteostasis is defined as the homeostatic mechanisms that maintain the function of all cytoplasmic proteins. We recently demonstrated that the capacity of the proteostasis network is a critical factor that defines the limits of cellular and organismal survival in hypertonic environments. The curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2011-09, Vol.301 (3), p.C566-C576
Hauptverfasser: Burkewitz, Kris, Choe, Keith, Strange, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteostasis is defined as the homeostatic mechanisms that maintain the function of all cytoplasmic proteins. We recently demonstrated that the capacity of the proteostasis network is a critical factor that defines the limits of cellular and organismal survival in hypertonic environments. The current studies were performed to determine the extent of protein damage induced by cellular water loss. Using worm strains expressing fluorescently tagged foreign and endogenous proteins and proteins with temperature-sensitive point mutations, we demonstrate that hypertonic stress causes aggregation and misfolding of diverse proteins in multiple cell types. Protein damage is rapid. Aggregation of a polyglutamine yellow fluorescent protein reporter is observable with
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.00030.2011