Effects of HIV Protease Inhibitors on Progression of Monocrotaline- and Hypoxia-Induced Pulmonary Hypertension in Rats

Pulmonary hypertension (PH) is among the complications of HIV infection. Combination antiretroviral therapy may influence the progression of HIV-related PH. Because Akt signaling is a potential molecular target of HIV protease inhibitors (HPIs), we hypothesized that these drugs altered monocrotaline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2010-11, Vol.122 (19), p.1937-1947
Hauptverfasser: GARY-BOBO, Guillaume, HOUSSAINI, Amal, SAVALE, Laurent, ADNOT, Serge, AMSELLEM, Valerie, RIDEAU, Dominique, PACAUD, Pierre, PERRIN, Aline, BREGEON, Jérémy, MARCOS, Elisabeth, DUBOIS-RANDE, Jean-Luc, SITBON, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulmonary hypertension (PH) is among the complications of HIV infection. Combination antiretroviral therapy may influence the progression of HIV-related PH. Because Akt signaling is a potential molecular target of HIV protease inhibitors (HPIs), we hypothesized that these drugs altered monocrotaline- and hypoxia-induced PH in rats by downregulating the Akt pathway, thereby inhibiting pulmonary artery smooth muscle cell proliferation. Daily treatment with each of 3 first-generation HPIs (ritonavir 30 mg/kg, amprenavir 100 mg/kg, and nelfinavir 500 mg/kg) started 3 weeks after a subcutaneous monocrotaline injection (60 mg/kg) substantially diminished pulmonary artery pressure, right ventricular hypertrophy, number of muscularized pulmonary vessels, pulmonary arterial wall thickness, and proliferating pulmonary vascular Ki67-labeled cells without affecting vessel caspase 3 staining. HPI treatment partially prevented the development of hypoxia- and monocrotaline-induced PH. Monocrotaline-induced PH was associated with marked activation of Akt signaling in the lungs and proximal pulmonary arteries, with increases in phosphorylated Akt, phosphorylated glycogen-synthase-kinase-3β (GSK3), and phosphorylated endothelial nitric oxide synthase, all of which decreased markedly after treatment with each HPI. In contrast, PH-associated increases in phosphorylated extracellular signal-related kinase 1/2 and myosin light-chain phosphatase were unaltered by the HPIs. The 3 HPIs and the phosphatidylinositol 3-kinase inhibitor LY294002 inhibited platelet-derived growth factor-induced phosphorylation of Akt and GSK3 in cultured pulmonary artery smooth muscle cells and blocked cell proliferation; this last effect was abolished by the GSK3 inhibitor SB216763. These results support an effect of HPIs on pulmonary vascular remodeling mediated by inhibition of Akt phosphorylation and consequently of pulmonary artery smooth muscle cell proliferation.
ISSN:0009-7322
1524-4539
DOI:10.1161/circulationaha.110.973750