Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma

Distinct oncogenic signalling cascades have been associated with non-Hodgkin lymphoma. ERK1/2 signalling elicits both transcriptional and post-transcriptional effects through phosphorylation of numerous substrates. Here we report a novel molecular relationship between ERK1/2 and CHK2, a protein kina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2011-07, Vol.2 (1), p.402-402, Article 402
Hauptverfasser: Dai, Bojie, Zhao, X. Frank, Mazan-Mamczarz, Krystyna, Hagner, Patrick, Corl, Sharon, Bahassi, El Mustapha, Lu, Song, Stambrook, Peter J., Shapiro, Paul, Gartenhaus, Ronald B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distinct oncogenic signalling cascades have been associated with non-Hodgkin lymphoma. ERK1/2 signalling elicits both transcriptional and post-transcriptional effects through phosphorylation of numerous substrates. Here we report a novel molecular relationship between ERK1/2 and CHK2, a protein kinase that is a key mediator of the DNA damage checkpoint that responds to DNA double-strand breaks. Our studies are the first to demonstrate the co-localization and overexpression of ERK1 /2 and CHK2 in diffuse large B-cell lymphoma (DLBCL). The physical interaction between ERK and CHK2 was highly dependent on phosphorylated Thr 68 of CHK2. Concurrent administration of an ERK inhibitor enhances the antitumour activity of CHK2 inhibition in both a human DLBCL xenograft model as well as primary human DLBCL cells. Our data suggest a functional interaction between ERK and CHK2 and support the potential combined therapeutic targeting of ERK and CHK2 in human DLBCL. Chk2 is a kinase that is a potential chemotherapeutic target. Here, Chk2 and the kinase ERK are shown to functionally interact, and are elevated in expression in human diffuse B-cell lymphomas. Combinatorial inhibition of the kinases was also shown to block tumour growth in an in vivo mouse model.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms1404