An all-statistics, high-speed algorithm for the analysis of copy number variation in genomes

Detection of copy number variation (CNV) in DNA has recently become an important method for understanding the pathogenesis of cancer. While existing algorithms for extracting CNV from microarray data have worked reasonably well, the trend towards ever larger sample sizes and higher resolution microa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-07, Vol.39 (13), p.e89-e89
Hauptverfasser: Chen, Chih-Hao, Lee, Hsing-Chung, Ling, Qingdong, Chen, Hsiao-Rong, Ko, Yi-An, Tsou, Tsong-Shan, Wang, Sun-Chong, Wu, Li-Ching, Lee, H. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detection of copy number variation (CNV) in DNA has recently become an important method for understanding the pathogenesis of cancer. While existing algorithms for extracting CNV from microarray data have worked reasonably well, the trend towards ever larger sample sizes and higher resolution microarrays has vastly increased the challenges they face. Here, we present Segmentation analysis of DNA (SAD), a clustering algorithm constructed with a strategy in which all operational decisions are based on simple and rigorous applications of statistical principles, measurement theory and precise mathematical relations. Compared with existing packages, SAD is simpler in formulation, more user friendly, much faster and less thirsty for memory, offers higher accuracy and supplies quantitative statistics for its predictions. Unique among such algorithms, SAD's running time scales linearly with array size; on a typical modern notebook, it completes high-quality CNV analyses for a 250 thousand-probe array in ∼1 s and a 1.8 million-probe array in ∼8 s.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkr137