Natural language processing and the oncologic history: is there a match?
The widespread adoption of electronic health records (EHRs) is creating rich databases documenting the cancer patient's care continuum. However, much of this data, especially narrative "oncologic histories," are "locked" within free text (unstructured) portions of notes. Nat...
Gespeichert in:
Veröffentlicht in: | Journal of oncology practice 2011-07, Vol.7 (4), p.e15-e19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widespread adoption of electronic health records (EHRs) is creating rich databases documenting the cancer patient's care continuum. However, much of this data, especially narrative "oncologic histories," are "locked" within free text (unstructured) portions of notes. Nationwide incentives, ranging from certification (Quality Oncology Practice Initiative) to monetary reimbursement (the Health Information Technology for Economic and Clinical Health Act), increasingly require the translation of these histories into treatment summaries for patient use and into tools to assist in transitions of care. Unfortunately, formulation of treatment summaries from these data is difficult and time-consuming. The rapidly developing field of automated natural language processing may offer a solution to this communication problem.
We surveyed a cross section of providers at Beth Israel Deaconess Medical Center regarding the importance of treatment summaries and whether these were being formulated on a regular basis. We also developed a program for the Informatics for Integrating Biology and the Bedside challenge, which was designed to extract meaningful information from EHRs. The program was then applied to a sample of narrative oncologic histories.
The majority of providers (86%) felt that treatment summaries were important, but only 11% actually implemented them. The most common obstacles identified were lack of time and lack of EHR tools. We demonstrated that relevant medical concepts can be automatically extracted from oncologic histories with reasonable accuracy and precision.
Natural language processing technology offers a promising method for structuring a free-text oncologic history into a compact treatment summary, creating a robust and accurate means of communication between providers and between provider and patient. |
---|---|
ISSN: | 1554-7477 1935-469X |
DOI: | 10.1200/JOP.2011.000240 |