Repair of chromosomal abasic sites in vivo involves at least three different repair pathways
We introduced multiple abasic sites (AP sites) in the chromosome of repair‐deficient mutants of Escherichia coli, in vivo, by expressing engineered variants of uracil‐DNA glycosylase that remove either thymine or cytosine. After introduction of AP sites, deficiencies in base excision repair (BER) or...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2000-10, Vol.19 (20), p.5542-5551 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduced multiple abasic sites (AP sites) in the chromosome of repair‐deficient mutants of Escherichia coli, in vivo, by expressing engineered variants of uracil‐DNA glycosylase that remove either thymine or cytosine. After introduction of AP sites, deficiencies in base excision repair (BER) or recombination were associated with strongly enhanced cytotoxicity and elevated mutation frequencies, selected as base substitutions giving rifampicin resistance. In these strains, increased fractions of transversions and untargeted mutations were observed. In a recA mutant, deficient in both recombination and translesion DNA synthesis (TLS), multiple AP sites resulted in rapid cell death. Preferential incorporation of dAMP opposite a chromosomal AP site (‘A rule’) required UmuC. Furthermore, we observed an ‘A rule‐like’ pattern of spontaneous mutations that was also UmuC dependent. The mutation patterns indicate that UmuC is involved in untargeted mutations as well. In a UmuC‐deficient background, a preference for dGMP was observed. Spontaneous mutation spectra were generally strongly dependent upon the repair background. In conclusion, BER, recombination and TLS all contribute to the handling of chromosomal AP sites in E.coli in vivo. |
---|---|
ISSN: | 0261-4189 1460-2075 1460-2075 |
DOI: | 10.1093/emboj/19.20.5542 |