Compound C stimulates heme oxygenase-1 gene expression via the Nrf2-ARE pathway to preserve human endothelial cell survival

We recently identified adenosine monophosphate-activated protein kinase (AMPK) as a novel inducer of heme oxygenase-1 (HO-1) and surprisingly found that compound C (6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine), a cell-permeable inhibitor of AMPK, could also eleva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical pharmacology 2011-08, Vol.82 (4), p.371-379
Hauptverfasser: Liu, Xiao-Ming, Peyton, Kelly J., Shebib, Ahmad R., Wang, Hong, Durante, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently identified adenosine monophosphate-activated protein kinase (AMPK) as a novel inducer of heme oxygenase-1 (HO-1) and surprisingly found that compound C (6-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine), a cell-permeable inhibitor of AMPK, could also elevate HO-1 suggesting other AMPK-independent actions for this agent. In this study, we investigated the biochemical mechanism by which compound C stimulates HO-1 expression in human endothelial cells (ECs) and determined the biological significance of the induction of HO-1 by compound C in these cells. Compound C stimulated a concentration- and time-dependent increase in HO-1 expression and an increase in HO-1 promoter activity that was abrogated by mutating the antioxidant responsive elements (AREs) in the HO-1 promoter or by overexpressing a dominant negative mutant of NF-E2-related factor 2 (Nrf2). Compound C also stimulated Nrf2 expression this was associated with an increase in the production of reactive oxygen species and with a decline in intracellular glutathione levels. Interestingly, the glutathione donor N-acetyl- l-cysteine or the NADPH oxidase inhibitor apocynin blocked the induction of HO-1 by compound C. Finally, compound C stimulated EC death and this was potentiated by silencing HO-1 expression and reversed by the administration of CO, biliverdin, or bilirubin. In conclusion, this study demonstrates that compound C stimulates HO-1 gene expression in human vascular endothelium via the activation of the Nrf2/ARE signaling pathway to counteract compound C-mediated cell death. The ability of compound C to induce HO-1 expression may contribute to the pleiotropic actions of this agent and suggest caution when using compound C to probe for AMPK functions.
ISSN:0006-2952
1873-2968
DOI:10.1016/j.bcp.2011.05.016