Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates
Motivation: In recent years, development of a single-method fold-recognition server lags behind consensus and multiple template techniques. However, a good consensus prediction relies on the accuracy of individual methods. This article reports our efforts to further improve a single-method fold reco...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2011-08, Vol.27 (15), p.2076-2082 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivation: In recent years, development of a single-method fold-recognition server lags behind consensus and multiple template techniques. However, a good consensus prediction relies on the accuracy of individual methods. This article reports our efforts to further improve a single-method fold recognition technique called SPARKS by changing the alignment scoring function and incorporating the SPINE-X techniques that make improved prediction of secondary structure, backbone torsion angle and solvent accessible surface area.
Results: The new method called SPARKS-X was tested with the SALIGN benchmark for alignment accuracy, Lindahl and SCOP benchmarks for fold recognition, and CASP 9 blind test for structure prediction. The method is compared to several state-of-the-art techniques such as HHPRED and BoostThreader. Results show that SPARKS-X is one of the best single-method fold recognition techniques. We further note that incorporating multiple templates and refinement in model building will likely further improve SPARKS-X.
Availability: The method is available as a SPARKS-X server at http://sparks.informatics.iupui.edu/
Contact:
yqzhou@iupui.edu |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btr350 |