Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates

Motivation: In recent years, development of a single-method fold-recognition server lags behind consensus and multiple template techniques. However, a good consensus prediction relies on the accuracy of individual methods. This article reports our efforts to further improve a single-method fold reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2011-08, Vol.27 (15), p.2076-2082
Hauptverfasser: Yang, Yuedong, Faraggi, Eshel, Zhao, Huiying, Zhou, Yaoqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation: In recent years, development of a single-method fold-recognition server lags behind consensus and multiple template techniques. However, a good consensus prediction relies on the accuracy of individual methods. This article reports our efforts to further improve a single-method fold recognition technique called SPARKS by changing the alignment scoring function and incorporating the SPINE-X techniques that make improved prediction of secondary structure, backbone torsion angle and solvent accessible surface area. Results: The new method called SPARKS-X was tested with the SALIGN benchmark for alignment accuracy, Lindahl and SCOP benchmarks for fold recognition, and CASP 9 blind test for structure prediction. The method is compared to several state-of-the-art techniques such as HHPRED and BoostThreader. Results show that SPARKS-X is one of the best single-method fold recognition techniques. We further note that incorporating multiple templates and refinement in model building will likely further improve SPARKS-X. Availability: The method is available as a SPARKS-X server at http://sparks.informatics.iupui.edu/ Contact: yqzhou@iupui.edu
ISSN:1367-4803
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btr350