Insights into the Evolution of a Complex Virus from the Crystal Structure of Vaccinia Virus D13
The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 r...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2011-07, Vol.19 (7), p.1011-1020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The morphogenesis of poxviruses such as vaccinia virus (VACV) sees the virion shape mature from spherical to brick-shaped. Trimeric capsomers of the VACV D13 protein form a transitory, stabilizing lattice on the surface of the initial spherical immature virus particle. The crystal structure of D13 reveals that this major scaffolding protein comprises a double β barrel “jelly-roll” subunit arranged as pseudo-hexagonal trimers. These structural features are characteristic of the major capsid proteins of a lineage of large icosahedral double-stranded DNA viruses including human adenovirus and the bacteriophages PRD1 and PM2. Structure-based phylogenetic analysis confirms that VACV belongs to this lineage, suggesting that (analogously to higher organism embryogenesis) early poxvirus morphogenesis reflects their evolution from a lineage of viruses sharing a common icosahedral ancestor.
► Poxvirus D13 acts as a scaffold for the morphogenesis of spherical immature virions ► D13 has a double “jelly-roll” structure, like other large DNA virus capsid proteins ► Structure-based phylogenetics places D13 into an icosahedral viral lineage ► Poxvirus morphogenesis reflects Vaccinia virus evolution from an icosahedral ancestor |
---|---|
ISSN: | 0969-2126 1878-4186 |
DOI: | 10.1016/j.str.2011.03.023 |