The combination of either tempol or FK506 with delayed hypothermia: implications for traumatically induced microvascular and axonal protection

Following traumatic brain injury (TBI), inhibition of reactive oxygen species and/or calcineurin can exert axonal and vascular protection. This protection proves optimal when these strategies are used early post-injury. Recent work has shown that the combination of delayed drug administration and de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurotrauma 2011-07, Vol.28 (7), p.1209-1218
Hauptverfasser: Fujita, Motoki, Oda, Yasutaka, Wei, Enoch P, Povlishock, John T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following traumatic brain injury (TBI), inhibition of reactive oxygen species and/or calcineurin can exert axonal and vascular protection. This protection proves optimal when these strategies are used early post-injury. Recent work has shown that the combination of delayed drug administration and delayed hypothermia extends this protection. Here we revisit this issue in TBI using the nitroxide antioxidant Tempol, or the immunophilin ligand FK506, together with delayed hypothermia, to determine their effects upon cerebral vascular reactivity and axonal damage. Animals were subjected to TBI and treated with Tempol at 30 or 90 min post-injury, or 90 min post-injury with concomitant mild hypothermia (33°C). Another group of animals were treated in the same fashion with the exception that they received FK506. Cranial windows were placed to assess vascular reactivity over 6 h post-injury, when the animals were assessed for traumatically induced axonal damage. Vasoreactivity was preserved by early Tempol administration; however, this benefit declined with time. The coupling of hypothermia and delayed Tempol, however, exerted significant vascular protection. The use of early and delayed FK506 provided significant vascular protection which was not augmented by hypothermia. The early administration of Tempol provided dramatic axonal protection that was not enhanced with hypothermia. Early and delayed FK506 provided significant axonal protection, although this protection was not enhanced by delayed hypothermia. The current investigation supports the premise that Tempol coupled with hypothermia extends its benefits. While FK506 proved efficacious with early and delayed administration, it did not provide either increased vascular or axonal benefit with hypothermia. These studies illustrate the potential benefits of Tempol coupled to delayed hypothermia. However, these findings do not transfer to the use of FK506, which in previous studies proved beneficial when coupled with hypothermia. These divergent results may be a reflection of the different animal models used and/or their associated injury severity.
ISSN:0897-7151
1557-9042
DOI:10.1089/neu.2011.1852