Change detection for objects on surfaces slanted in depth
Change detection for objects associated with a surface extended in depth might be more difficult than for a frontal surface if it is easier to shift attention within a frontal surface. On the other hand, previous research has shown that ground surfaces have a special role in organizing the 3-D layou...
Gespeichert in:
Veröffentlicht in: | Journal of vision (Charlottesville, Va.) Va.), 2010-09, Vol.10 (11), p.12-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Change detection for objects associated with a surface extended in depth might be more difficult than for a frontal surface if it is easier to shift attention within a frontal surface. On the other hand, previous research has shown that ground surfaces have a special role in organizing the 3-D layout of objects shown against scene backgrounds. In the current study, we examined whether a frontal background or a ground surface background would result in superior change detection performance using a change detection flicker paradigm. In the first experiment, we considered whether background slant affects change detection performance. In Experiment 2, we examined the effect of height in the image on change detection performance. In Experiment 3, we examined change detection performance on slanted ceiling surfaces. The results of these experiments indicate that change detection is more efficient on near-ground planes than on surfaces at intermediate slants or ceiling surfaces. This suggests that any superiority of frontal plane backgrounds in a change detection task may be equivalent to the superiority of a near-ground plane in organizing a scene, with the lowest level of performance occurring for surfaces that are not frontal but further from a ground surface orientation. |
---|---|
ISSN: | 1534-7362 1534-7362 |
DOI: | 10.1167/10.11.12 |