Distribution of standing-wave errors in real-ear sound-level measurements

Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2011-05, Vol.129 (5), p.3134-3140
Hauptverfasser: Richmond, Susan A., Kopun, Judy G., Neely, Stephen T., Tan, Hongyang, Gorga, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance ( Burke , 2010 ) and threshold prediction ( Rogers , 2010 ) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke and Rogers from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.3569726