Analysis of Gating Transitions among the Three Major Open States of the OpdK Channel
OpdK is an outer membrane protein of the pathogenic bacterium Pseudomonas aeruginosa. The recent crystal structure of this protein revealed a monomeric, 18-stranded β-barrel with a kidney-shaped pore, whose constriction features a diameter of 8 Å. Using systematic single-channel electrical recording...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2011-06, Vol.50 (22), p.4987-4997 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | OpdK is an outer membrane protein of the pathogenic bacterium Pseudomonas aeruginosa. The recent crystal structure of this protein revealed a monomeric, 18-stranded β-barrel with a kidney-shaped pore, whose constriction features a diameter of 8 Å. Using systematic single-channel electrical recordings of this protein pore reconstituted into planar lipid bilayers under a broad range of ion concentrations, we were able to probe its discrete gating kinetics involving three major and functionally distinct conformations, in which a dominant open substate O2 is accompanied by less thermodynamically stable substates O1 and O3. Single-channel electrical data enabled us to determine the alterations in the energetics and kinetics of the OpdK protein when experimental conditions were changed. In the future, such a semiquantitative analysis might provide a better understanding on the dynamics of current fluctuations of other β-barrel membrane protein channels. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi200454j |