The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns

The T-box transcription factor T-bet is important for the differentiation of naive CD4(+) T helper cells (Th cells) into the Th1 phenotype. Much is known about T-bet's role as a transcriptional activator, but less is known about the mechanisms by which T-bet functionally represses alternative T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2011-05, Vol.208 (5), p.1001-1013
Hauptverfasser: Oestreich, Kenneth J, Huang, Albert C, Weinmann, Amy S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The T-box transcription factor T-bet is important for the differentiation of naive CD4(+) T helper cells (Th cells) into the Th1 phenotype. Much is known about T-bet's role as a transcriptional activator, but less is known about the mechanisms by which T-bet functionally represses alternative Th cell genetic programs. In this study, we first identify Socs1, Socs3, and Tcf7 (TCF-1) as gene targets that are negatively regulated by T-bet. Significantly, T-bet's role in the repression of these genes is through a direct interaction with their promoters. Consistent with this, we identified two T-bet DNA-binding elements in the Socs1 promoter that are functionally used to down-regulate transcription in primary Th1 cells. Importantly, T-bet's novel role in transcriptional repression is because of its ability to physically associate with, and functionally recruit, the transcriptional repressor Bcl-6 to a subset of promoters. Furthermore, T-bet functionally recruits Bcl-6 to the Ifng locus in late stages of Th1 differentiation to repress its activity, possibly to prevent the overproduction of IFN-γ, which could result in autoimmunity. Collectively, these data establish a novel mechanism for T-bet-mediated gene repression in which two lineage-defining transcription factors, one a classical activator and one a repressor, collaborate to promote and properly regulate Th1 development.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.20102144