c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase

The progression and negative outcome of a variety of human carcinomas are intimately associated with aberrant activity of the c-Met oncogene. The underlying cause of this dysregulation, however, remains a subject of discussion, as the majority of cancer patients do not present with activating mutati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2011-04, Vol.30 (17), p.2003-2016
Hauptverfasser: Szabo, R, Rasmussen, A L, Moyer, A B, Kosa, P, Schafer, J M, Molinolo, A A, Gutkind, J S, Bugge, T H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The progression and negative outcome of a variety of human carcinomas are intimately associated with aberrant activity of the c-Met oncogene. The underlying cause of this dysregulation, however, remains a subject of discussion, as the majority of cancer patients do not present with activating mutations in c-Met receptor itself. In this study, we show that the oncogenic protease matriptase is ubiquitously co-expressed with the c-Met in human squamous cell carcinomas and amplifies migratory and proliferative responses of primary epithelial cells to the cognate ligand for c-Met, pro-hepatocyte growth factor/scatter factor (proHGF/SF), through c-Met and Gab1 signaling. Furthermore, the selective genetic ablation of c-Met from matriptase-expressing keratinocytes completely negates the oncogenic potential of matriptase. In addition, matriptase-dependent carcinoma formation could be blocked by the pharmacological inhibition of the Akt–mammalian target of Rapamycin (mTor) pathway. Our data identify matriptase as an initiator of c-Met-Akt–mTor-dependent signaling axis in tumors and reveal mTor activation as an essential component of matriptase/c-Met-induced carcinogenesis. The study provides a specific example of how epithelial transformation can be promoted by epigenetic acquisition of the capacity to convert a widely available paracrine growth factor precursor to its signaling competent state.
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2010.586