Novel CaF2 Nanocomposite with High Strength and Fluoride Ion Release

Secondary caries and restoration fracture remain common problems in dentistry. This study tested the hypothesis that combining nano-CaF2 and glass fillers would yield nanocomposites with high mechanical properties and F release. Novel CaF2 nanoparticles (56-nm) were synthesized via spray-drying and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 2010-07, Vol.89 (7), p.739-745
Hauptverfasser: Xu, H.H.K., Moreau, J.L., Sun, L., Chow, L.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secondary caries and restoration fracture remain common problems in dentistry. This study tested the hypothesis that combining nano-CaF2 and glass fillers would yield nanocomposites with high mechanical properties and F release. Novel CaF2 nanoparticles (56-nm) were synthesized via spray-drying and incorporated into resin. F release increased with increasing the nano-CaF2 content, or with decreasing pH (p < 0.05). F-release rates at 70-84 days were 1.13 µg/(cm2·day) and 0.50 µg/(cm2·day) for nanocomposites containing 30% and 20% nano-CaF2, respectively. They matched the 0.65 µg/(cm2·day) of resin-modified glass ionomer (p > 0.1). The nanocomposites had flexural strengths of 70-120 MPa, after 84-day immersion at pH 4, pH 5.5, and pH 7. These strengths were nearly three-fold that of resin-modified glass ionomer, and matched/exceeded a composite with little F release. In summary, novel CaF2 nanoparticles produced high F release at low filler levels, thereby making room in resin for reinforcement glass. This yielded nanocomposites with high F-release and stress-bearing properties, which may help reduce secondary caries and restoration fracture.
ISSN:0022-0345
1544-0591
DOI:10.1177/0022034510364490