Synthesis and Biological Evaluation of Bivalent Ligands for the CB1 Receptor

Dimerization or oligomerization of many G protein-coupled receptors, including the CB1 receptor, is now widely accepted and may have significant implications towards medications development targeting these receptor complexes. A library of bivalent ligands composed of two identical CB1 antagonist pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2010-10, Vol.53 (19), p.7048-7060
Hauptverfasser: Zhang, Yanan, Gilliam, Anne, Maitra, Rangan, Damaj, M. Imad, Tajuba, Julianne M., Seltzman, Herbert H., Thomas, Brian F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dimerization or oligomerization of many G protein-coupled receptors, including the CB1 receptor, is now widely accepted and may have significant implications towards medications development targeting these receptor complexes. A library of bivalent ligands composed of two identical CB1 antagonist pharmacophores derived from SR141716 linked by spacers of various lengths were developed. The affinities of these bivalent ligands at CB1 and CB2 receptors were determined using radiolabeled binding assays. Their functional activities were measured using GTP-γ-S accumulation and intracellular calcium mobilization assays. The results suggest that the nature of the linker and its length are crucial factors for optimum interactions of these ligands at CB1 receptor binding sites. Finally, selected bivalent ligands ( 5d and 7b ) were able to attenuate the antinociceptive effects of the cannabinoid agonist CP55,940 in a rodent tail-flick assay. These novel compounds as probes will enable further evaluation of CB1 receptor dimerization and oligomerization, its functional significance, and may prove useful in the development of new therapeutic approaches to G protein-coupled receptor mediated disorders.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm1006676