Spinal regions involved in baroreflex control of renal sympathetic nerve activity in the rat
Spinal cord injury causes debilitating cardiovascular disturbances. The etiology of these disturbances remains obscure, partly because the locations of spinal cord pathways important for sympathetic control of cardiovascular function have not been thoroughly studied. To elucidate these pathways, we...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2011-04, Vol.300 (4), p.R910-R916 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spinal cord injury causes debilitating cardiovascular disturbances. The etiology of these disturbances remains obscure, partly because the locations of spinal cord pathways important for sympathetic control of cardiovascular function have not been thoroughly studied. To elucidate these pathways, we examined regions of the thoracic spinal cord important for reflex sympathetic control of arterial pressure (AP). In anesthetized rats, baroreceptor relationships between pharmacologically induced changes in AP and changes in left renal sympathetic nerve activity (RSNA) were generated in spinally intact rats and after acute surgical hemisection of either the dorsal, left, or right T8 spinal cord. None of these individual spinal lesions prevented the baroreceptor-mediated increases in RSNA caused by decreases in AP. Thus, baroreceptor-mediated increases in RSNA in rats are mediated by relatively diffuse, bilateral, descending, excitatory projections. The ability to reduce RSNA at increased AP was impaired after both dorsal and left hemisections, and baroreceptor gain was significantly decreased. Baroreceptor-induced maximum decreases in RSNA were not affected by right hemisections. However, baroreflex gain was impaired. Because both dorsal and left hemisections, but not right hemisections, attenuated the decrease in RSNA at elevated AP, we conclude that pathways involved in the tonic inhibition of spinal sources of sympathetic activity descend ipsilaterally in the dorsal spinal cord. Our results show that many lesions that do not fully transect the spinal cord spare portions of both descending excitatory pathways that may prevent orthostatic hypotension and descending inhibitory pathways that reduce the incidence of autonomic dysreflexia. |
---|---|
ISSN: | 0363-6119 1522-1490 |
DOI: | 10.1152/ajpregu.00646.2010 |